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MINIMIZATION OF THE TRUNCATION ERROR BY GRID ADAPTATION

NAIL K. YAMALERV™

Abstract. A new grid adaptation strategy, which minimizes the truncation error of a pth-order finite
difference approximation. is proposed. The main idea of the method is based on the observation that the
global truncation error associated with discretization on nonuniform meshes can be minimized if the interior
grid points are redistributed in an optimal sequence. The method does not explicitly require the truncation
error estimate and at the same time, it allows one to increase the design order of approximation by one
globally, so that the same finite difference operator reveals superconvergence properties on the optimal grid.
Another very important characteristic of the method is that if the differential operator and the metric
coefficients are evaluated identically by some hvbrid approximation the single optimal grid generator can
he employed in the entire computational domain independently of points where the hybrid discretization
switches from one approximation to another. Generalization of the present method to multiple dimensions
is presented. Numerical calculations of several one-dimensional and one two-dimensional test examples

demonstrate the performance of the method and corroborate the theoretical results.

Key words. truncation error, grid adaptation criterion, finite difference approximation, error equidis-

tribution
Subject classification. Applied and Numerical Mathematics

1. Introduction. Grid adaptation has now become widespread for solving multi-dimensional partial
differential equations in arbitrary-shaped domains. One of the most important problems associated with the
adaptive grid generation is an essential effect of the grid point distribution on error in the numerical solution.
Until the present time little attention has been paid to the fact that the concentration of grid points in regions
which most influence the accuracy of the numerical solution may at the same time introduce additional error
due to the grid non-uniformity [1] [3].

There are two basic strategies of the grid adaptation, namely, grid refinement and grid redistribution
techniques. In the first approach grid nodes are added to locally enrich the grid to achieve higher accuracy.
In the second approach the number of grid nodes is fixed and the idea is to adjust the position of grid points
to improve the numerical solution accuracy. In spite of significant. distinctions. for both methods reliable
and efficient grid adaptation criteria are needed.

A number of grid adaptation criteria based on the equidistribution principle have been developed. As
has been shown in [4], the grid point distribution is asymptotically optimal if some error measure is equally
distributed over the field. One of the widely-used approaches is to redistribute grid points in accordance
with the arc length and the local curvature of the solution curve [5]. [6]. This kind of clustering is intended
to reduce the error in the vicinity of strong gradients and local extrema of the mumerical solution, but it
does not necessarily guarantee improvement in the accuracy where the solution is smooth.

Another class of methods is based on equidistribution or minimization of the local truncation error or

-

its estimate [7]-[10]. In [7] the error estimate obtained by using a finite difference approximation of the
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leading truncation error term is equidistributed by the grid point redistribution. Klopfer and McRae [8]
solve a one-dimensional shock-tube problem using the explicit predictor-corrector scheme of MacCormack
on a grid dvnamically adapted to the solution. The error estimate is the leading truncation error term
of the differential equations transformed to the computational coordinates. The metric coeflicient is taken
as a linear function of the smoothed error measure. For solving a second-order two-point boundary value
problem with a centered second-order finite difference scheme Denny and Landis [9] suggest to determine
the optimal coordinate mapping so that the entire truncation error vanishes at all grid points. However.
this grid generator concentrates grid nodes where the solution is smooth rather than near steep gradients.
Thus. the error reduction occurs in regions which do not practically affect the numerical solution accuracy.
An alternative technique is emploved in [10] where the optimal coordinate transformation is constructed as
the solution of a constrained parameter optimization problem minimizing a measure of the truncation error.
The error measure used is a finite difference evaluation of the third derivative of the numerical solution
calculated in the computational space. The main drawback of all the methods mentioned above is the fact
that the error estimates do not properly take into account that part of the truncation error which is caused
by the nonuniform grid spacing. Furthermore, it is not clear how to extend these methods to more general
equations and discretizations as well as to multiple dimensions.

A grid adaptation procedure equidistributing an error estimate of the numerical solution has successfully
been used in [11] to reduce simulation error in such integral quantities as the lift or drag. This error
estimate is directly related to the local residual errors of the primal and adjoint solutions of the Euler
equations. As it follows from the numerical results presented in [11], the order of accuracy of the integral
outputs increases by one if the proposed adaptation strategy is employed. Although, this approach provides
significant improvement in the accuracy of the functional, the error estimation procedure is quite expensive
in terms of computational time since except for the solution of the primal problem it is needed to solve the

adjoint Euler equations that doubles the computational efforts.

The formulation of an adaptive mesh redistribution algorithm for boundary value problems in one
dimension has been presented in [12]. The analysis uses the error minimization to produce an optimal
piecewise-polynomial interpolant in a given norm that leads to the development of a family of grid adaptation
criteria. Despite the fact that the present approach works well in one dimension this error equidistribution
analysis can not be directly extended to multiple dimensions [13].

In [14] and [13] the finite element residual is applied to provide a criterion for determining where a
finite element mesh requires refinement. As has been noted in [16] for hyperbolic problems with non-smooth
solutions the finite element residual may bhe an ineffective error estimator since for such problemns the residual
measured in the L, norm diverges whereas the numerical solution converges in this norm. The problem might
be overcome if the divergence of the residual is localized to the area of non-smoothness and the residual
would then be used as a local error indicator. However, the localization of discontinuities becomes a very
complicated problem in multiple dimensions.

It can be shown that the truncation error of any differential operator obtained on a nonuniform grid
consists of two different parts. The first one. which always exists on a uniform mesh, is due to the ap-
proximation of the differential operator itself. The second one is caused by the coutribution to the error
from the nonuniform grid spacing. As the grid is locally refined or redistributed the first part of the error
decreases while the second part may considerably increase because of the grid non-uniformity. All of the
equidistribution methods mentioned above redistribute grid points in accordance with one or another error

estimate obtained on a non-adapted grid. but in doing so the grid adaptation itself introduces additional



error which changes the error distribution. Therefore, to account for this change in the error distribution
the grid adaptation procedure based on the error equidistribution strategy should be repeated iteratively
until the error estimate norm is equally distributed over the field. Note that for moving meshes dynamically
adapted to the solution the iterative procedure should be done at each time step to get the optimal mesh
characterized by having the error equidistributed throughout the domain.

The main objective of this paper is to construct an optimal coordinate transformation so that the
leading truncation error term of an arbitrary pth-order finite difference approximation is minimized that
provides superconvergent results on the optimal grid. In contrast to the error equidistribution principle,
for the present technique a posteriori error estimate is not explicitly required. Furthermore, the new grid
adaptation criterion allows one to minimize the error due to the differential operator itself and the error owing
to the evaluation of the metric coefficients simultaneously. Another very attractive feature of the present
approach is its applicability to hybrid approximations which depend on some basic properties of the solution
such as a flow direction, sonic line and others. If the metric coefficients are evaluated by the same hybrid
discretization used for the differential operator, the new grid adaptation criterion remains valid in the whole
computational domain regardless to points where the hybrid scheme switches from one approximation to
another. Extension of the new adaptation criterion to multiple dimensions is presented. Numerical examples

considered illustrate the ability of the method and corroborate the theoretical analysis.

2. Grid Adaptation in One Dimension. We consider the truncation error of the first derivative
approximated on a 1D nonuniform grid. Let » and £ denote the physical and computational coordinates.
respectively. Without loss of generality it is assumed that « <z < band 0 < £ < 1. A one to one coordinate

transformation between the physical and the computational domains is given by

(2.1) x = x(€),

where

(2.2) x(0) =«
' 1) =b

It is assumed that the above mapping is not singular so that the Jacobian of the transformation is a strictly

positive function, i.e.
(2.3) re >0, VEe]0,1].
3

The nonuniform grid in the physical space is obtained as images of nodes of a uniform mesh in the compu-

tational domain
(2.4) ri = a(&), &:%,i:QLHJ

Taking into account the coordinate transformation Eq.(2.1) the first derivative of a function f(r) with respect

to «x can be written as follows
(2.5) ' fo= 2L

To construct a pth-order approximation of f. in the physical domain we approximate fe and ¢ by some

pth-order finite difference expressions in the computational domain

i+,
> wfi
(2.6 Li(fo) = ——=
: ) ISt = i+mo !
Z f‘jm-rnz
m=i—m



where x,, = x(&,). fi = f(&); Ly is a finite difference operator; the indexes {;.l> and my,m- as well as
the coeficients oy and 3, depend on particular approximations used for evaluating fe and ¢, respectively.
Henceforth. we shall assume that the functions f(£) and x(€) are smooth enough so that all derivatives
needed for the derivation are continuous functions on £ € [0, 1]. Expanding the nominator and denominator

of Eq.(2.6) in a Tavlor series with respect to & and omitting the index ¢ on the right hand side vield

i+l

X aufi = fe+ CUEITIAE £ OAE
- +z Budm = 1 + Crad™TV Agr + O(AgrH),
m=i—m,
where
0 < g’;: Frh = g’;:lf Af = %

(’l{ and (7 are constants dependent on oy and 3y, respectively. Substituting Eq.(2.7) into Eq.(2.6) and

taking into account that x¢ > 0. V¢ € [0. 1] one can write

fe+ Afvf“’*”
- ALY (p+li
(1 +C I )

P oaxg

(2.8) Ly(fe) = O(AgF).

Assuming that A£ is chosen to be sufliciently small so that Af"lr({"ﬂ)/;rd < 1, Eq.(2.7) can be linearized
as follows

Agr

1 2
(2.9) Lutfe) = = (fe+ Clagrsr™h) (1 - C;ff1~gp+‘)) +O(AEPH).
T g

Note that the error introduced by the linearization is of the order of O{A£*P*?). Neglecting higher order
terms in Eq.(2.9) we have

(p+1) p+1)
Y e
]

(2.10) Ty(r) = Lu(fe) = fo = CJAP=— fe.

4

The right hand side of Eq.(2.10) is the leading truncation error term. Thus, if the metric coefficient ¢
is evaluated numerically as in Eq.(2.6) the asymptotic truncation error of any pth-order finite difference
approximation consists of two different parts. one of which is due to the evaluation of fr and the second one
is caused by the disceretization of the metric coeflicient re. It should be emphasized that any grid adaptation
based on minimization or equidistribution of the first part of the truncation error alone is not sufficient since
the second part of the truncation error may drastically increase in regions where x(€) rapidly changes. In
other words, any inconsistent grid adaptation transfers the error from the first term of the truncation error
to the second one and vice versa. To minimize both parts of the truncation error simultancously we impose

the following restriction on the coordinate mapping x(€). V€ € [0, 1]
(2.11) CL M o — Cra™ fe| < O(AE)E.

If Eq.(2.11) holds the asymptotic order of approximation of Eq.(2.6) (2.7) on the optimal grid generated by
the mapping r(€) is p+ 1 in the entire computational domain. Replacing the inequality sign by the equality

one in Eq.(2.11) the grid adaptation criterion can be expressed as

(2.12) ('ff“’“’ — CrrtY fe = O(AE)rL.



Recall that the coefficients C’I{ and C7 depend on the particular approximations used and do not depend on
F(&) and x(§). One of the most important classes of approximation is a consistent approximation when the
sate difference operator is employved to evaluate the derivatives fe and ¢, In this case the coefficients ('1{

and (7 are identical and Eq.(2.12) is simplified to

P
(2.13) FEY = foadY = O(A8) g
or setting the right hand side equal to zero vields

(2.14) f Ve — et =0,

There are several advantages of such a simplification. First of all, the use of the same difference approx-
imation for both f¢ and x¢ eliminates the f, term from the truncation error which is the most troublesome
part of the error being dependent on the first derivative which is evaluated. Actually, let us represent fe and

1. o
fg(p+ "in terms of the & derivatives

(2 1') ff = 'I.Ef-"
1o 1) : 2! 1 ) 1
£ = ('?E + e (,—’) f=a ™ et Da wefor+ .2l i1V

Note that the binomial theorem can not be used to expand the power of the derivative operator in the above
formula since /0§ and x¢d/0r do not commute. Substituting the above expressions into Eq.(2.10) the

leading term of the truncation error T,(r) can be written as follows
I

Lp+l)
(2.16) Tya) = (Cf = C)AS=—f, +C] [(p + a for + .+ .rgf_gv+”]
Tg

From Eq.(2.16) it is clear that if C,{' # (') then the truncation error depends on the first derivative f, being
approximated. That is why it is very important to evaluate the metric coefficient. by the same difference
approximation used for fe. It should be noted, that if r¢ is approximated by the exact analytical expression
or any finite difference formmula different from that which is emploved to calculate fe it gives rise to the f,
term in the truncation error.

Another advantage of the consistent approximation of f¢ and r¢ is that the single optimal grid in the
sense of Eq.(2.14) can be generated for hvbrid discretization, when the coefficient Cl{ may implicitly depend
on the function f(€). The identical numerical approximation of x¢ and fe removes the dependence of the
optimal mapping on points in the physical domain where the hybrid scheme switches from one approximation
to another. If this is the case the optimal grid point distribution depends only on the order of approximation
and is completely independent of the particular finite difference formula used.

As has already been mentioned, Eq.(2.14) is a grid adaptation criterion. but at the same time this
equation can be treated as a grid generation equation. To provide the existence of the solution of Eq.(2.14)
it is assumed that fo > ¢ > 0. V€ € [0.1], and f(§) € CP*1[0,1]. It can easily be seen that x(£) =
c1 f(&) + c2 is the solution of Eq.(2.14), but this trivial solution is not appropriate since it means that f(r)
is a linear function of & in the physical space. Another problem associated with the solution of Eq.(2.14)
is boundary conditions. Theoretically, to find the unique solution of Eq.(2.14) p + 1 boundary conditions
should be imposed while only two boundary conditions Eq.(2.2) are available. In spite on the abovementioned
difficulties the optimal grid generation problem Eqs.(2.14),(2.2) can be solved analvtically for very important

cases p = 1.2 and the approximate analyvtical solutions can be obtained for higher order discretizations p > 3.

ot



2.1. First-Order Approximation, p = 1. For a first-order accurate approximation p is equal to one

in Eq.(2.13) which takes the form
(2.17) feere = feree = O(Aa.
Using the following expression for the second derivative

_ Jeete = feres
fro =257

3
£y
Eq.(2.17) written in the physical space is reduced to
fer
2.18 .= .
(2.18) & O(A8)

Integrating Eq.(2.18) and taking into account the boundary conditions £(a) = 0. £(b) = 1 yield
[ fordr

(2.19) e —
| ferde

a

However. to satisfv Eq.(2.18) the following restriction should be imposed on f,,

3
(2.20) /f_,.,d;r = O(A€).

Since &, > 0 from Eq.{2.18) it follows that f,, > 0. Consequently, Eq.(2.20) means that the second
derivative f,, has to be of the order of O(A€) for all € [a.b]. In other words, if f(r) is an essentially
nonlinear function, so that Eq.(2.20) is not satistied, it is impossible to increase the global order of accuracy

of f, by the grid point redistribution.

2.2. Second-Order Approximation, p = 2. If both f; and «¢ are evaluated identically by a second-

order accurate formula the grid adaptation equation Eq.(2.13) written for p = 2 becomes
Y 2
(221) fEEE‘l.E - ff‘rfff = ()(Af).lg
Let us transform the derivatives in Eq.(2.21) from the computational space to the physical space

(2.22) fe = frxg 3
ffff = f.r.r.r-rg + SfrJ-J’Effg + f.ril'ﬁﬁg-
Substituting Eq.(2.22) into Eq.(2.21) we have

(2.23) frowd? +3frrage = O(AE)r}

Using the following expressions for the metric coefficient and its derivative

J‘E = b

e =
and assuming that f,, # 0.Ve € [0.b] Eq.(2.23) can be rewritten as

f.r.r.r Eer f')
=— =3 O(AE)
f.l'J' {.1' + ( £) f.l‘.l'

(2.24)

6



Since a decrease in the last terin in the above equation increases the approximation accuracy we neglect the

O(A€) term and integrate the left and right hand sides of Eq.(2.24) with respect to i to give
(2.25) & =Cl

where C is a constant of the integration. Equation (2.25) has one real and two complex roots. Since we seek
only real roots the complex roots are not considered. Taking into account the boundary conditions Eq.(2.2)
the above equation can readily be integrated, that gives

J£

[ (fer) V3dr
(2.26) fry=1

JUfea) 3 da

[

If & grid is generated in accordance with the optimal mapping Eq.(2.26) the leading term of the truncation
error is zero for all points in [a, b] and the global order of accuracy is increased from 2 to 3.

The optimal grid point distribution defined by Eq.(2.26) can be applied if f,.,. is a positive function
otherwise the mapping becomes singular that leads to the grid degeneration. However. this problem can be
overcome. For that purpose we divide the interval [a, b] on subintervals where f,, is of constant signs. Let
r{ < <y bean interval where the second derivative is negative. i.e. f,, = —|f..| < 0. Then. Eq.(2.26)

hecomes

]I (for)'Pde - ; [foel'/Bda i [foel VA d
(2.27) {lo) = J_I,“, = rl = .T.-l.—
_f(fr‘r)l/xd"r - f' |for|V/3dr f [fealV3dr

i

From Eq.(2.27) it follows that the metric coefficient £, given by Eq(2.26) is strictly positive in the interval
where f,, is negative. Taking into account the fact that the same formula Eq.(2.27) remains valid for positive
fer the intervals of positive and negative signs except for the inflection points of the function f(r) can be

joined so that

] 1feltda
(2.28) Ex) = J..'-I,i_o . Vrir#our
Z ] IfJ'-l"l/:;dI

J x40

where r; are the inflection points of f(x). To add the inflection points f,.{(x;) = 0 to the above integrals
special consideration is required.

Let &5y be a point of inflection of the function f(x). L.e. f,,(xo) = 0. Note in passing that if we modifv
the function f(r) by adding an arbitrary linear function the optimal grid Eq.(2.26) remains unchanged.
Furthermore, if the function f(r) is linear in the whole interval [a,b] then from Eq.(2.25) it follows that
& =0, Vir € [a.b]. Tt results in that the grid step size in the physical domain Ar = A£/E, tends to infinity.
It can be interpreted as to approximate the first derivative of the linear function exactly an arbitrary large
grid spacing can be used. Expanding f,, in a Tayvlor series about & = g in Eq.(2.26) and assuming that

f.r.r.r(-l'[)) ?é 0 _Vi(‘.l(l

fealt) = feer(@o) (@ —a0) + Ol —0)?)



Substituting the above expression in Eq.(2.26) and neglecting both O((ir — 29)?) and higher order terms give
5 3
(229) E,r = Cfr.rr(~1‘[))(-1' - -I"O)
Letting -+ — r( we have
. L/3
Eolawo) = lim (Cfrrp(ao)(r — 20)) " =0
=g
As noted above. this kind of grid degeneration when the metric coefficient £, vanishes does not impose any

restriction on the grid step size at the inflection point. Therefore. in the vicinity of the inflection point the

original second derivative f,, can be modified as

K r . _ |f1r| ) |f11| 2 €
=0 Jrul) = { Ueel b if] <

Ze

where € is a small positive parameter. From the above consideration it follows that for an arbitrary f €
("?[a. b} the optimal mapping minimizing the leading truncation error term globally is

j:(fl‘,-)]/:;dl‘
(2.31) ) = b
[(fer)V/3dr

a

To estimate the asymptotic truncation error of the second-order difference expression for f,. on the

optimal grid Eq.(2.26) we rewrite Eq.(2.8) including the third-order terms

 fe C2AE fege + Co AL £

(2.32) Latfs) = i 2L oagh.
re + CBA{.'-I'EEE + C;;Af‘s.‘l'f

Linearizing Eq.(2.32) and collecting the terms of O(A£%) and O(A€?) the first two leading terms in the

truncation error are

Ag? AP
¢ [fecews — weee fe] + Cs ¢

(2.33) Lo(e) = (2 =5 . [fg“’ff — gl
£ g

Since the first term on the right hand side of Eq.(2.33) is vanished on the optimal grid defined by Eq.(2.26)

the asviptotic truncation error becomes

A 3 )
(2.34) I(r) = ”’Tf’_ [f5(4)‘rﬁ - J’é“fg .
€

To determine the expression in the square brackets we differentiate Eq.(2.14) written for p = 2 with respect
to £&. Thus,

(2.35) ffmfs + feeewee — feeTeee — 'J(gl)fﬁ = 0.

Resolving Eq.(2.14) with respect to feee and substituting it in Eq.(2.35) give

(2.36) f e =2 fe = weeeai for

Using Eq.(2.36) the leading truncation error term on the optimal grid Eq.(2.26) can be recast as

(2.37) To(r) = C3A rege oo



Taking into account the fact that for the optimal grid Eq.(2.26) holds. z¢ee can be represented in terms of

the function f(r) and its derivatives as follows

35%1 - fJ'J‘J'f.l' — :)f;),, - 3f‘l('l”f4r.r
& 90l

where (" is the integration constant in Eq.(2.25). Substituting Fq.(2.38) into Eq.(2.37) the leading truncation
error term is given by

p — 3 Sfl_,l‘l — 3.]"-&”.".&1'
(2.39) To(r) = C3AE e

This formula is valid for all points from the interval [a.d] except for the inflection points of the function f(a).

Let us estimate the leading term of the truncation error at a point of inflection @y : f,.(r¢) = 0. Since
we have modified the second derivative f,, in the neighborhood of the inflection point Eq.(2.30) the second-
order term in the truncation error does not vanish. Substituting Eq.(2.30) into Eq.(2.33) and neglecting

higher order terms we have

—f o (fa )28 FoI/s _
To(xg) = C2AE° Jortraslfar) + (Jew) 7 fraa '

fer
Letting @ — xg yields
o) fJ‘.m‘ (.T())
2.40 T = ChA&=———~.
(2.40) (o) = CAE T

Equation (2.40) shows that, locally, near the inflection point only the second order of approximation can be
obtained on the optimal grid. Note that it is not the case if the function f(r) is linear because then, any
second-order accurate approximation of fe and z¢ in Eq.(2.5) on an arbitrary nonuniform mesh gives us the
exact value of f,. By virtue of the fact that the number of the inflection points is finite the L, norm of the
second-order accurate approximation of f, on the optimal grid should provide superconvergent results.

In regions where the function f(x) is discontinuous the above reasoning is not valid since the first and
higher derivatives do not exist there. In contrast to the inflection point in the vicinity of local extrema of
f(x), where f,, achieves its maximum value, the fraction in Eq.(2.39) becomes very small so that locally,
even a higher order of accuracy may be obtained.

Remark 2.1 It can readily be checked that standard grid adaptation criteria such as the arc length of
the function f(x) and the second derivative f,, do not globally minimize the leading term of the truncation

error. Actually. using the arc length grid adaptation criterion the following grid point. distribution is obtained

f V1+ fidr

(2.41) &ua) = “(,
/14 fide
Substituting Eq.(2.41) into Eq.(2.33) vields

=3ffi + L+ ) four
(14 f2)2 ’

The comparison of Eq.(2.42) with the leading term of the truncation error obtained on a uniform grid. which

(2.42) Ty(x) = CLAE?

is

3 (r) = CrAE foasr,



shows that this grid point distribution may improve the accuracy locally near steep gradients of the function
flr). At the same time, in regions where f,, is much grater than f,, e.g. necar local extrema of f(x), the
actual order of approximation may deteriorate to one or even be worth.

If instead of the arc length adaptation criterion one redistributes grid points in accordance with the

second derivative f,, the leading term of the truncation error is

2fl'1‘.1‘

(2.43) To(r) = —CLAE? 72

As it follows from the above formula in regions where |f..] < v/2 the local truncation error Eq.(2.43) is
alwavs grater than the asymptotic truncation error on a uniform grid.

Summarizing what has been said above the following conclusions can be drawn. On the one hand. the
standard grid adaptation criteria do not provide the superconvergence. On the other hand, although. the
standard grid adaptation techniques may locally improve the accuracy of calculation the global truncation
crror mayv become even larger than that obtained on the corresponding uniform mesh. Despite the fact that
the above consideration has been performed for the second-order discretization the same conclusion can he
done for higher order schemes.

Remark 2.2 We shall now briefly describe an alternative way of the solution of Eq.(2.21). Integrating

Eq.(2.21) by parts and neglecting the O(A&) term on the right hand side yield

(24-1) f££.'175 - fg.l'&g = G,

where C is a constant of the integration. The above equation is closed by using the boundary conditions

Eq.(2.2).
In order to find the unknown constant ¢’ we rewrite Eq.(2.44) in the following form
2 0 [ fe
2.45 r—|=)=
(2:45) "€ e (1'£> ¢

Taking into account the fact that

L9 (f
fflr - Tg 0{ (J,‘g)

Eq.(2.45) is reduced to Eq.(2.23) and the constant C' can easily be determined, that gives

b 3

(2.16) C = / (fer) e

°

The boundary value problem Eq.(2.44).(2.46).(2.2) should be solved numerically. If at some point fe and fe,
are equal to zero simultaneously Eq.(2.44).(2.46) is degenerated. The problem can be overcome by modifving

the derivatives fe, fee and the constant C as follows

Sk —Eeifs 3

f{{ — 11)- - f‘r.urfr

f
& C2(foa P

10



b

C = /(f_,.‘,.)'/"‘df

i

where f“ is given by Eq.(2.30), f,. and f“.J. are calculated by differentiating and integrating f,,',,‘ with respect
to x. accordingly. Since the function f,, is strictly positive in the entire computational domain the first
derivative fE is a positive function as well. It makes the modified equation fully consistent with Eq.(2.31).
It should be stressed that there are several differential forms of the optimal grid generation equation.
For example, instead of integration of Eq.(2.21) by parts we may consider E¢.(2.23) as a differential equation
for the optimal grid point distribution. Since each of the differential equations has its advantages and

disadvantages at the present time, it is difficult to say which one of them is better.
2.3. High-Order Approximations, p > 3. If f and ¢ are approximated identically by a third-order
accurate formula the oprimal grid generation equation written in operator form in the phyvsical space is

o 1 071" 1 071" o
(2.47) L—ra] f=1r L—Ia} =10

Performing the indicated differentiation we have

(248) fr.r (15‘5:)1 - 461'5.”'.1') + f.r (_Gi.r.r f.I'J‘.I' + E.z' ff“) =0

Although. the above equation is much more complicated than the analogous one derived for the second-order
discretizations Eq.(2.24) we shall construct the solution of Eq.(2.48) in a similar form. On the one hand,
a solution in the form of £ = g(f,). where g is an arbitrary function of f,, is not appropriate since in this
case the f_ff“ term in Eq.(2.48) can not be canceled. On the other hand, if a solution depends on f,,, or
higher derivatives of f(x) it gives rise to the f},-m term in the truncation error which is not canceled as well.

Therefore, we shall seek the solution of Eq.(2.48) in a form similar to Eq.(2.25)

(2.49) o =C(fer)".
Substituting Eq.{2.49) into Eq.(2.48) the leading truncation error term can be written as

(2.50) Ty(x) = % [a(Q = 110)(feze)® + (da = 1) fru SV

In contrast to the second-order discretization, for the third-order approximation the leading term of the
truncation error does not vanish at any a = const. Assuming that the parameter o(r) is a function which
weakly depends on & and setting the leading truncation error term equal to zero the following quadratic

equation for a(r) is obtained
(2.51) a(2)(2 = 11a(2))(frre)? + @a(r) = Df f9 =0

The solution of Eq.(2.51) is

(2.52) Qs = % (1 +2r(x) £ /1= Tr(e) + 47'(.1-)‘-’) )
with
=



Without loss of generality it is assumed that f,., # 0. If f,., = 0 then the solution of Eq.(2.51) is « = 1/4.
Note that the function «(x) should be positive in the entire physical domain otherwise, the mapping Eq.(2.49)
with a < 0 concentrates grid points where f(x) is linear and makes the grid very coarse where the second
derivative f,, is large. Since the above analysis is valid if the function a(x) slightly depends on r we construct

a as follows

F+2r+V1I-Tr+4%), r<o

(2.53) alr) = ¢ =t 4 By oy g 2 0<r<i
42 =V1I-Tr+42), r>1

where the polynomial in Eq.(2.53) has been chosen so that a{r) is a continuously differentiable function of
r. A plot of a versus r is shown in Fig.2.1. As can be seen in the figure, the function «(r) is practically
equal to 1/4 in the whole range of r except for an interval —1 < r < 3. Although. a(r) is quite smooth the
function () may be non-snmooth because it depends on f,,, f,., and fl(f“ which are calculated numerically
and may therefore be very oscillatory. In numerical applications the function a(xr) should be smoothed to

meet the requirements used for the derivation of Eq.(2.50).

Alpha
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FiG. 2.1. Parameter o for a third-order accurate discretization.

Such a choice of a(a) provides that the leading truncation error term is approximately equal to zero
in the entire physical domain. As it follows from Eq.(2.49), the second derivative f,,. must be a positive
function on [a.b]. Note that a general property of both Eq.(2.47) and Eq.(2.14) is that if £, is a solution
of Eq.(2.47) then —§&, is a solution of Eq.(2.47) as well. The same is true for the function f(z) and its
derivatives, i.e. if we substitute f“. = — f,. into Eq.(2.47) we get the same equation in terms of f,,,.. Hence,
the second derivative f.,. in Eq.(2.49) can be replaced with Eq.(2.30). Thus, if f¢ and x¢ are evaluated by

the same third-order accurate formula the optimal grid point distribution, which minimizes the leading term



of the truncation error in the entire computational domain, is

(fra) 0 dr
(2.54) fry=20—

b
J(fre)otnda

R

where f,., and a(x) are defined by Eq.{2.30) and Eq.(2.53). respectively.

From the above analysis one can see that the same strategy used for the third-order approximation can
be applied to higher order discretizations. Actually. the leading term of the truncation error for an arbitrary
pth-order approximation of f, is
(2.55) T,(&) = Cl';ifp (‘ff(p-H)J.f - ft'J'(E"Jr”)

NS
Accounting for the following relations between the &- and r-derivatives written in operator form
0 19
06 & or

o i_@_]”
agn | &, Or

the truncation error can be transformed into the physical space as follows

1 91! 1 91
2.56 T, r)= C)ACI’ . —_— — —_ T
(2.56) =6 (|2m| 1-0 2o
Expanding the power of the derivative operator
) p+i _ L8 9 p+1 .
57 [£a] s=[lga]] =
(2.0’) | o p+1 af Lo P Lol af . - ”(_)L
= [C m] Ié?.r + (])+ 1) [E_rx} s [E—r m} Tr + ...+ Iif—!m] .r [E:E] ar

it can be seen that the term with f, in Eq.(2.56) is canceled and therefore the highest derivatives of £(x)
and f(r) in the truncation error T,(z) are W and ff,’)H), respectively. Assuming that on the optimal grid
the leading term of the truncation error is of the order of O(A€) we shall seek £(r) as a function of f(r)
and its derivatives. Comparing the highest derivatives of £ and f one can observe that if &, = g(f. f,)

then the term f_ﬁ”*“ in Eq.(2.57) is never canceled while if £; is a function of f}-"’. n > 3 it introduces the

n -1 . . . .
P~ term in the truncation error T,(x). In a similar manner to the first-, second-, and

uncancellable f {
third-order approximations the optimal grid for the pth-order accurate discretization is sought in the form

of Eq.(2.49). Substituting Eq.(2.49) into Eq.(2.57) the leading truncation error term becormes

C,ALP
(2.58) T,(x) = (f”—)f ([1 —alp+ DI P +aGla frr frawn oo f}”’))

In the above formula it has already been taken into account that the second term on the right hand side is
proportional to «. This is no surprise since for o = 0, which corresponds to a uniform mesh. the asvmptotic
. . 1 . . 5 = 1
truncation error T, (:r) 1s reduced to C,AEP }"+ ' that is why all the terms in Eq.(2.58) except for .5-"+ '
I 2 A 1
have to be proportional to «. For example, for fourth- and fifth-order discretizations the leading truncation
2

error terms obtained on the optimal grid Eq.(2.49) are

| ()13 (3) pid)
(2.50) Ty(x) = % ((1 _5a) f g {—100(1 + :3(1)((?"_‘1.))__) +5(9a — l)fwf,,{,f )



and

Tyr) = o240 ((1 —6a) f19 4 {(G + 490 + 19607 + 2740%) L

(2.60) er oy (FL3)2 pr EIEY (flyE
—(7T+97a + 1210%) 57— + 3(2Ta — 2) 25=2— 4 2(260 — 1)—;?}) -

respectivelv. As it follows from Eq.(2.58) at any « = const both terms on the right hand side do not vanish
simultancously. To minimize the leading term of the truncation error the following procedure is proposed.
At each grid point the parameter a is found as the solution of the nonlinear equation T(«) = 0, which is
solved by the Newton's method. That choice of o provides that the leading truncation error term is vanished
on the optimal grid. Since the above consideration is valid only if « slightly depends on » the function a(r)
has to be smoothed in numerical applications.

Remark 2.3 If p = +oc. i.e. the order of approximation is infinitely large the leading term of the
truncation error Eq.(2.58) is vanished for ¢« — 0. In other words, the higher is the order of approximation
used to evaluate fe and g the more uniform is the grid which minimizes the leading truncation error term.
In the limit of infinitely high-order approximations a uniform grid is optimal in the sense of minimization of
the asymptotic truncation error.

3. Grid Adaptation in Multiple Dimensions. The two-dimensional transformation of the first
derivative is given by

— yr}fﬁ - yEfr]

(3.1) fe 7

where the Jacobian of the transformation is
J = reyy — oy

Approximating the € and 5 derivatives in Eq.(3.1) by some pth- and ¢th-order finite difference formulas,
respectively, we get

+1 ; +1) , +1 AL +1
(g + Co Ay ) (fe + CLAEP FPT) = (ye + CL ALY V) (fy + CAn £

+O(AEPT! Ayt
(-Fg + CVPAEVJ.(EIH—I ) )(y” + CqATqu})’l+l)) _ (J’,] + C(IA7]‘/-I'£;I+X ))(UE + C,‘Aé‘pyél‘f'l))

Lh (f.r) =

(3.2)

In the above expression it has already been taken into account that the metric coefficients x¢, y¢ and ).y,

are evaluated by the same finite difference operators which are used for calculating f; and f,,, respectively.
In view of the fact that the mapping used is nonsingular .J > 0, the denominator of Eq.(3.2) can be

linearized that vields

; (p+1) (p+1) . {g+1 (g+1)
Ly(fe) = l—] [.‘/r}fﬁ - !/&fl] + C;)Afp(?/nfgl - y£I+ fu) + CqA"q(f{.Uul - !jffuq )| x

{3.3) ¢ AgP | .
, +1 Codnt +1 +1 )
[1 I : (!/r)ir(fl)+ ' - !/ép )-1711) -3 < (41'5’!/5,(’ h - y&f(nq )):l + ()(A£’+l : A’){H_l)

Multiplyving out the terms in the square brackets and neglecting higher order terms the leading term of

truncation error becomes

, 1) (p+1 (p+1) 1
Tp.q(‘SJI) = 5 {(vafp [yufg(p+ - .’/5’ )fn - fJ'(.UI/-Tgi - n"r).'/él)+ ))] +

(3.4) U e o e
+C A [Feri ™ = el = Felweny™ ! - yerlt ]}

As in the 1D case. the truncation error T, , consists of two different parts, one of which arises from the

evaluation of the metric cocflicients e, ye, x),. ¢, and the second one occurs due to the approximation of fe



and f,,. From Eq.(3.4) it follows that if the absolute value of the first expression in the square brackets is less
than O(AE) and the abolute value of the second one is less than O(A#) then the global truncation ervor is
O(A&PT Ao+ rather than O(AEP, An?). Thus, to increase the order of the finite difference approximation

Eq.(3.2) by one globally grid points should be redistributed so that the following equations hold

_ J (.l/r/fé]’+l) - .’/j{l,+l’fr/) = (!/I]ff - ]/Efl() (Uu SUSRL 1)‘/ép+l)) + ()(AE)]_)
(30) ; (f (g+1) g+ _ L (g1 (g+1) : 2
g eYn - !/Efu = (,Ur}ff - .l/Efu) J&.’/l; — Yediy + ()(A’])J

Removing the parentheses and rearranging the corresponding terms Eq.(3.3) can be reduced to

u [F = fud™ = LY = 028

(3.6) L
Ve ,‘,‘l+l — fuuy ARY f,..r‘,,q b = O(An)J

Note that a reduction of the O(A€) and O(Ay) terms in Eq.(3.6) decreases the truncation error on the
optimal grid.

The above equations can be treated as the optimal grid generation equations in the sense of minimization
of the leading truncation error term. It should be noted. that if y¢ = 0 in the entire computational domain
Eq.(3.6) is reduced to Eq.(2.14). At the same time, if the y coordinate does not depend on 7, i.e. y = (&)
Eq.(3.6) is simplified to

(3.7) 2y fLH — faleth = O(An)rl,

that can be treated as an analog of Eq.(2.13) in the 5 coordinate.

Another very useful property of the optimal mapping is that Eq.(3.6) are invariant with respect to both
translation and stretching of the 2, y and €.y coordinates. Summarizing the above properties of Eq.(3.6) one
may conclude that the 2D optimal grid generation equations are fully consistent with the 1D counterpart
Eq.(2.14).

The present approach can directly be extended to three dimensions. Actually, the three-dimensional
transformation of the first derivative is
;-I/C':'l fo+ Ye=e

where the Jacobian of the mapping is given by

(3.8) fo =0

— Sg¥e “pYe — Yn=¢
7 < fl[+ ) ; i fL

J = TelYnz¢ + Iyl ce + FeYeoy — Telo sy — Xy¥Ye2e — IgYnie.
With pth-. ¢th-, and rth-order finite difference approximations for the £-, 7-, and (-derivatives, respectively,
we have

(og~éq(/ a¢ l/(),,~ ()£f+ (() l/()£~ - dg‘.‘()g?/)(),]f—i- (()m«()El/ A,,]/(SEZ)(S(_)C

L - ~ L O(AEMT Ayt AT,
w(fo) = derdyydcz + 0,yrdcydez + derdeydyz — dewdeydyz — dywdeydeoz — dcard,ydez (3¢ ! ¢
(3.9) ‘
where the differential operators d¢, d,,. and §; are defined by
p+1
65 = + C])AE} ))cn+l
P ,)1+
(310) (s,, = (”l + C A”Im
)r +1

b= A+ CAC E,

e, . C,. and C, are constants dependent on particular pth-, gth-. and rth-order finite difference

approximations which are applied to discretize the &-, 9-, and (-derivatives, accordingly. In Eq.(3.9).(3.10)



it has already been accounted for that the metric coeflicients are approximated by the same finite difference
expressions which are used for evaluating fe, f,,, and f¢.

Having linearized the fraction in Eq.(3.9) the leading truncation error term is written as

Tp.r/.l'(f~’l-c) = ll {C,)Af” [Ff(;'+1) _ .ié’)+l)f.:~] + C{IA"L; [F q¢+1) ,j,‘)"+1)f1‘] +

(3.11) . -
+CACT [F£r+l) _ Jér+l)fr] } )
where
{p+1) (p+1) (p+1) +1)
F P = f , ("'L, Yy — 1/g~n) + 1/51 (~r}f(, - ‘~gfr)) p (Ug fu {/uf()
( +|) ( +1) +1) (
By’ T zeye — zeye) + o e fe — 2ef) + ~7/q e fo = wcfe)
(r+1) { ‘+|) { {r+1)
(3.12) F’ _f ' :IJUE_‘.UIIZE)‘*'U"F-% ("Ef:]_:uff)'*‘: ' (.Uwa —.U£fw/)
’ ;+l) +1) (p+1) +1)
](I ip ( Yy — .I/C*-n) + l/gl (~,,.I'< - :(J'u) 51) (.‘/(-ru - .llui"()
g+1 1 +1) +1
Jrt = ) = e Teyc — Zeye) + 1/,, (Zc.l'g —zerg) + 2 Ep W (yere —yore)
(l+l) +l (r—+1}
']k o )( Syl — YnZe) + Ug (~£-"11 - Ipde) + 3<’ (:l/,,.l‘g - Yedy)

Similarly to the 1D and 2D cases described above the leading term of the truncation error Eq.(3.11) can be
divided into two parts. The first part, which also exists on a uniform mesh, is due to the approximation of
fe. fy. and f.. The second part, which is vanished on a uniform Cartesian mesh is caused by the evaluation
of the metric coefficients. From Eq.(3.11) it is apparent that if a grid is constructed so that the first term
in the square brackets is of the order of O(A€£), the second one is of the order of O(An). and the third one
is of the order of O(AQ) for all £ € [0.1], 5 € [0,1], and ¢ € [0.1] then the global order of approximation
of the difference operator Eq.(3.9) in £. 1, and ¢ on the optimal grid is increased from p, ¢, and r to p + 1,
g+ 1. and r + 1, respectively. Hence, in the sense of minimization of the leading truncation error term the

grid adaptation criteria are

(3.13) FY — £ 7Y = 0(a6)]
(3.14) EHD — f, 050 = O(an)J
(3.15) FY — p 0 = 0AQ) g,

Note that the above equations are not a system of equations and can be considered separately. If it is
necessary to improve the accuracy with respect to the € coordinate alone a grid should be generated so that
only Eq.(3.13) holds. However, if it is desirable to increase the order of approximation of f, by one in the
&. 1. and ¢ coordinates simultaneously then the grid has to obey the system of equations Eq.(3.13)-(3.15).

As in the case of two dimensions the 3D grid adaptation criteria Eq.(3.13) (3.15) can be simplified. After
the substitution of Eq.(3.12) in Eq.(3.13)-(3.15) and considerable algebraic manipulation the grid adaptation

equations can be rewritten in a very compact form

(SC.UI]_yC:l)) fé,}+l) —fr-l'(p+” fl/ L f::ép-H) :()(Aﬁ)]
(3.16) (eze = zeye) | AV = fodl™ = oy ,,"“’ o N Y)Y
(znge — ynze) [FIH = foal = gy < £V = 0(AQ

where f.. f,. and f. are the first derivatives with respect to the x, y, and z coordinates, respectively. One of

the characteristic features of the above equations is that they do not depend on the coefficients C,. C,. and

16



(. Consequently, if in each spatial direction the metric coefficients and the first derivatives of f(€,7.() are
evaluated consistently by some hybrid finite difference operators then the grid adaptation criteria Eq.(3.16)
can be applied in the whole computational domain regardless of points where the hybrid scheme switches
from one approximation to another. A comparison of Eq.(3.16), Eq.(3.6), and Eq.(2.13) shows that the 3D
grid adaptation criteria Eq.(3.16) are reduced to Eq.(3.6) if z¢ = z,, = 0. z¢ # 0. while if in addition to these
conditions we require that ye = yo = 0. y, # 0 Eq.(3.16) are reduced to the 1D optimal grid generation
equation Eq.(2.13). In a similar manner as Eq.(2.13) and Eq.(3.6), it is easy to prove that Eq.(3.16) are
invariant with respect to stretching and translation of both the physical and computational coordinates.

As it follows from the analysis presented in the foregoing section the grid adaptation equation does not
assure that the coordinate mapping obtained as the solution of Eq.(2.14) is not singular. Since Eq.(3.16)
is converted to Eq.(3.6) and in its turn Eq.(3.6) is reduced to Eq.(2.14) if the dimension of the space is
decreased by one. the same singularity may occur in two and three dimensions as well.

Equations (3.6) and (3.16) have to be closed by corresponding boundary conditions. Since these equations
are (p+ 1)th-order partial differential equations p+ 1 boundary conditions should be imposed at each couple
of the opposite boundaries (i.e. € =0and € = 1;y=0and p = 1; ¢ = 0 and ¢ = 1) to find the unique
solution. However. at each boundary we have only one boundary condition. For example, in the 3D case in

the € coordinate we have
(3.17) Euy,z) =0, &r.y.z)=1.

In other words Eq.(3.6) and Eq.(3.16) are not closed. The situation becomes even more uncertain when
only one of the grid adaptation criteria is used. However, this uncertainty gives us additional degrees of
freedom and at the same time, it is conceivable that there exists more than one optimal grid satisfving the
criteria Eq.(3.6) or Eq.(3.16). From this standpoint both Eq.(3.6) and Eq.(3.16) should be treated as the
grid adaptation criteria rather than the optimal grid generation equations.

One of the most general structured grid generation strategies is based on the variational approach
proposed by Brackbill and Saltzmann in [17]. In this method a grid is generated as the solution of the
minimization problem. By forming the variational principle using a linear combination of the integral
measures of smoothness. orthogonality, and adaptation, a system of elliptic equations is derived. The new
grid adaptation criteria can be incorporated into this approach by constructing an integral measure of
adaptation so that the Euler-Lagrange equations associated with the minimization of this integral alone give
us Eq.(3.16). On the one hand, the minimax principle guarantees that the coordinate mapping obtained as
the solution of this minimization problem is not singular. On the other hand , the new grid adaptation criteria
provide that the leading term of the truncation error is minimized so that the finite difference approximation
Eq.(3.9) calculated on the optimal grid exhibits superconvergence properties.

Remark 3.1  In spite on the fact that the present analysis has been performed for the first derivative

f. it can be directly extended to an equation or a system of equations, which can be represented as
(3.18) folx) = d(z).

For example, for the steady state 1D Burgers equation written in conservation law form we have

| g [(u? Hu

where g is a positive constant. A comparison of Eq.(3.19) and f, shows that for the Burgers equation the



optimal grid can be constructed using Eq.(2.54) with

u? du
(3.20) flor) = — — p—.

2 Or
It should be pointed out that the above conclusion is valid if the second derivative u,, = (u,), and the
convective term (u?/2), are approximated consistently.

The same approach can be applied to the Euler and Navier-Stokes equations. The 1D Euler and Navier-

Stokes equations cau be written in conservation law form as
OF
8;1-

where F is the inviscid flux F; for the Euler equations and F; — F,. where F, is the viscous flux. for the

(3.21) 0,

Navier-Stokes equations. As it follows from Eq.(3.16), any component of the vector F can be chosen as a
function with 1‘(;51)(‘('t of which a grid is adapted. Although, that choice provides increase in accuracy for
this particular vector component but it may not result in decrease in the truncation error for the remaining
vector components. In fact, as there are components of the vector F as many the optimal grids can be
generated. Since the different vector components may have strong gradients and local extrema in different
regions of the physical domain this kind of grid adaptation is not effective. If this is the case the function
f(r) can be obtained by using the method of least squares. Because of the optimal grid generation equations
are invariant with respect to stretching of the function f(#) the vector components F,, n = 1. N can be
normalized as

|Fu(z)]

2 99 L = —
(3.22) Fo(r) 1n§x|F,,(;r)|

It results in that all of the vector components are of the same order and, consequently, make proportional
contributions to the function f(a). The resulting function f(r) is obtained as the solution of the following
minimization problem

[ ,"\(

(3.23) 3 (F (z:) — f(;:i))2 - min

i=0 n=1
in the least square sense. The function f constructed in this fashion allows one to generate a grid which is
optimal for the whole vector F rather than for its particular component. Note that the power in Eq.(3.23)
should be chosen in accordance with the power of the L; norm in which the solution of the Euler or Navier-

Stokes equations is sought.

4. Results and Discussion. To validate the applicability and efficiency of the new method several
1D and one 2D test examples are considered. For each 1D test function five series of calculation on different
grids with the same number of grid points have been executed. The first one is done on a uniform grid.
The second one uses the standard grid adaptation criterion based on the arc length or the second derivative
of the test function. The third one is performed on the optimal grid obtained as the analyvtical solution of
Eq.(2.14). The fourth one emplovs the optimal grid Eq.(2.54) generated numerically by using the following
approximation for the second derivative

_hifie = (hi+ b)) fi v fica
1) (foadi = Rilviga (B + higr)/2

“ II,’Z.I','—.I','AI.

which is reduced to the second-order three-point central approximation of f,. if an equispaced grid in the

physical domain is used. The integrals in Eq.(2.54) is computed using the trapezoidal rule integration. As



a result of this integration the strictly increasing function £(x) is obtained which is then reversed by using
a third-order accurate piecewise spline interpolation. The fifth calculation is also executed on the uniform
grid, however, instead of a pth-order approximation a (p + 1)th-order accurate dicretization is applied to
calculate both fe and irg. At cach boundary one-sided pth-order differences are used for fg¢ and wr¢.

In order to estimate the accuracy of the method the pth-order finite difference approximation of f, is
compared with the exact value of the first derivative calculated at the same grid node in the Ly, norm. The
order of approximation is estimated on successively refined grids the coarsest one of which contains 20 cells

and the finest one has 2560 cells.

4.1. 1D Test Examples. Second-order approzimation, p = 2

The first test example is evaluation of the first derivative of f{x) = ™. 0 < .r < 1 by using a second-
order central differences for fe and . When m is sufficiently large this function has a boundary layer of
width O(1/m) near & = 1. For this test case the exact optimal grid point distribution defined by Eq.(2.21)

can be found analytically, which is

(4.2) Topt (£) = E77T.

In contrast to [9] the new grid adaptation criterion provides the concentration of grid nodes near the boundary

laver of the function f(z).

——&—— Uniform, 2nd order
——=&—— Numerical optimal
—&—— Analytical optimal
—w—— Standard

Uniform, 3rd order
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Fic. -1.1. Error convergence for a second-order approzimation of f., f(x) = ™ calculated on: 1) uniform grid. 2) optimal
grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion. 5) uniform

grid ustng third-order accurate discretization.

An error convergence plot for this test function is presented in Fig.4.1. As one might expect, the L,
norm of the truncation error calculated on a uniform grid exhibits the O(A€?) convergence rate which is
consistent with the second order of accuracy of the central differences. However, the same second-order

approximation of f, on the optimal grid Eq.(4.2) exhibits the convergence rate which is even higher than
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0O(AE%). Although, the accuracy of f, obtained on the adaptive grid Eq.(2.26) with f,, evaluated by Eq.(4.1)
is slightly less compared to the optimal grid Eq.(4.2) results the order of approximation is about 3.5. To show
the superiority of the present method over the standard grid adaptation criterion Eq.(2.41) the truncation
error calculated on grids adapted in accordance with the arc length of f(x) is also shown in Fig.4.1. In
spite of the fact that the standard grid adaptation technique slightly improves the accuracy of calculation in
comparison with the equispaced grid point distribution the convergence rate is less than O(A£2). We want
to emphasize that the new grid adaptation criterion Eq.(2.26) provides not only superconvergent results, but
on the finest mesh it reduces the error by 6 orders of magnitude compared to the uniform grid results.

An advantage of the cousistent grid adaptation Eq.(2.14), which is based on the fact that the truncation
errors due to the approximation of fe and w¢ cancel each other, becomes obvious when the optimal grid results
are compared with those obtained by using a third-order accurate approximation on a uniform grid. Figure
4.1 shows that both the second-order approximation on the optimal grid and the third-order discretization
on the uniform grid with the same number of grid points reveal the O(A£?) convergence rate. However, the
optimal grid results are about 10% times more accurate.

It should be noted that the optimal grid Eq.(4.2) is essentially non-smooth and does not meet the
standard criterion of smoothness, which is Juwge /ag] < O(1) [18]. Furthermore, the optimal mapping Eq.(4.2)
is singular at the point £ = (0 where 2¢ — oc. In spite on this fact, the above comparisons corroborate the
theoretical analvsis and demonstrate the advantage of the new grid adaptation criterion over the standard

approaches.
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Fia. 120 Error convergence of a second-order hybrid approzimation colculated with the consistent and inconsistent dis-

cretizations of the metric coefficient on the optimal and uniform grids.
Aunother very useful characteristic feature of the new method is its generality in the sense that if a

single second-order hybrid discretization is used for both fe and x¢ the same optimal mapping Eq.(4.2)

minimizes the leading truncation error term. To demonstrate this property the error convergence of the
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hybrid approximation obtained on the uniform and optimal grids with the same number of grid points are

depicted in Fig.4.2. The hybrid difference operator is constructed as follows

(4.3) (?i) ﬁ(fiﬁ*l = fic1)s i oven

3 sxe(=3fi + 4 fiy = fign). i odd

i

The identical approximation is employed for the metric coefficient g, A comparison shows that the global
order of the consistent approximation of fe and r¢ is increased by one on the same optimal grid Eq.(4.2)
used for the non-hybrid approximation. As has been shown in Section 2, the approximation of the metric
coefficient and the first derivative fe should e the same otherwise the optimal mapping defined by Eq.(2.26)
does not minimize the leading truncation error term. To show that the discretiztion of the metric coefficient
plays a crucial role in reduction of the truncation error we approximate r¢ by a two-point central difference
expression in the whole computational domain and use the same hybrid scheme Eq.(4.3) for fe. An error
convergence plot for this inconsistent approximation, which is also depicted in Fig.4.2, shows that if the
metric coefficient are evaluated in a different way than fe the order of approximation on the optimal grid
deteriorates to 2 as well as the truncation error increases by a factor of 10° compared to the consistent
discretization results.
The second test function considered is

1

——&—— Uniform, 2nd order
—&—— Numerical optimal
2 ——&—— Analytical optimal
——e»—— Standard
—4a—— Uniform, 3rd order
Numerical optimal, iterated
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Fic. 4.3. Error convergence for a second-order approzimation of fr, f(xr) = 1/((e” — l)a + 1) caleulated on: 1} uniform
grid. 2) optimal grid generated numerically, 3) analytical optimal grid. 4) grid adapted in accordance with the arc length

criterion, 5) uniform grid using third-order accurate discretization, 6) numerical optimal grid generated iteratively.

In the present test example the parameter m was chosen to be 5. This function has a boundary laver

of width O(m/(e™ — 1)) at » = 0. For this function the optimal grid generation equation Eq.(2.14). which
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depends on the order of approximation rather than on a particular type of discretization. can be solved
analytically, that gives
(,mf -1

o 1 :

(43) ~I"opt(£) =

It should be emphasized that Eq.(2.26) vields the same optimal mapping as Eq.(4.53). The optimal grid
Eq.(4.5) is the well-known exponential coordinate transformation, which is widely used in the literature
[1]. [18] for solving boundary laver problems. However, the mapping Eq.(4.5) is optimal only for a special
class of functions such as Eq.(4.4) and not optimal for other functions. Similarly to Fig.4.1 and 4.2, error
convergence plots for the symmetric second-order and hybrid discretizations Eq.(4.3) are depicted in Fig.4.3
and 4.4, respectively. It is apparent in these figures that the error obtained on the optimal grid reveals
the convergence rate of O(A€*?) that is even higher than it follows from the theoretical analysis. The
optimal grid point distribution constructed by the numerical integration of Eq.(2.26) reduces the truncation
error by about four orders of magnitude compared to the uniform grid results, but it does not provide
the same accuracy as the optimal grid Eq.(4.5). The accuracy can be improved if the following iterative
procedure is applied. Since the f., approximation Eq.(4.1) depends on the grid spacing in the physical
domain. the second derivative can be updated when the new grid point distribution is found. For this test
problem about 15-20 iterations were needed to reach the convergence. No attempt was made to optimize the
iteration process. Referring to Fig.4.3 one can see that this procedure considerably increases the accuracy

and provides practically the same convergence rate as for the analytical optimal grid Eq.(4.5).
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Fii. 1.4, Error convergence of a second-order hybrid approrimation calculuted with the consistent and inconsistent dis-

cretizations of the metric coefficient on the optitnal and uniform grids.

The importance of the metric coefficient evaluation is illustrated in Fig.4.4. Analogously to the foregoing
test case. the inconsistent discretization of fe and r¢ leads to decrease in both the order and accuracy of

the approximation. When the metric coefficient and the first derivative fe are evaluated by using the same
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hybrid operator Eq.(4.3) the convergence rate obtained on the optimal grid Eq.(4.5) becomes O{A€?).
From the present theoretical analysis it follows that the new grid adaptation strategy may be quite

sensitive to the inflection points of the function f(2). In order to verify this conclusion the following function

1
(4.6) fla) = — [sin(3mar) — 27sin(mur)]. 0<x <7,
36m*

which has me inflection points has been chosen as a test function. Despite the presence of the inflection points
where f,, = 0 it is possible to construct the optimal mapping analytically without using Eq.(2.30). It can
be done if the optimal grid Eq(2.26) is generated in each interval of constant signs of f,, separately. Thus,

we have

- .
I—<e<i =
m m

s 1
(4.7) Lopt(€) = —(j — 1)+ — arccos[2) — 2m& — 1].
m m

—

S

In numerical calculations the parameter m was taken to be 5. The above optimal coordinate transformation

obevs Eq.(2.26) in the entire physical domain except for the inflection points.
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Fic. 4.5. Error convergence for u second-order approzimation of f,, calculated on: 1) uniform grid, 2) optimal grid
generated numerically, 3) analytical optimal grid, |) grid adapted in accordance with the arc length criterion, 5) uniform grid

using third-order accurate discretization.

Figures 4.5 and 4.6 are analogous to Fig.4.1 and 4.2, accordingly. As one can see in Fig.4.5 the presence
of the inflection points results in that the convergence rate is O(AE%?) that is lower than it is predicted
from the theoretical analvsis. Nevertheless, the optimal grid adaptation reduces the truncation error by a
factor of 20 compared to the uniform grid results. One of the reasons of such a behavior is the fact that
high-order derivatives of the function f(+) Eq.(4.6) are well bounded that makes the approximation of f,
on the uniform grid sufficiently accurate. The use of the standard grid adaptation criterion based on f,,
Eq.(2.30) leads to deterioration of the convergence rate to O(AE?) and at the same time, the L, norm of

the truncation error is about 30 times less accurate than the uniform grid results. Figure 4.6 shows that the
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inconsistent. approximation of fe and x¢ increases the truncation error by 5 orders of magnitude compared

to the consistent approximation results calculated on the optimal grid.
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FiG. 4.6, Error convergence of a second-order hybrid approzimation calculated with the consistent and inconsistent dis-

cretizations of the metric coefficient on the optimal and uniform grids.

To gain greater insight into where the maximum error occurs pointwise error distributions obtained
on both the uniform aund optimal grids are shown in Fig.4.7. As expected. the truncation error calculated
on the optimal grid achieves its maximum values at the inflection points, while the error on the uniform
grid occurs at points where the third derivative |f, .| is large. In contrast to the uniform grid, the most
accurate approximation of the first derivative f. on the optimal grid is near the local extrema of f(x). For
demonstrating the gain in accuracy in the vicinity of the inflection points due to the use of Eq.(2.30) instead
of f,, a pointwise error plot obtained in this case is also presented in Fig.4.7. It is significant that the error
distribution obtained on the optimal grid is essentially nonuniform that gives an indication of the difference
between the present and equidistribution grid adaptation criteria.

From the practical point of view it is very important to improve the accuracy of calculation if the function
f(r) is discontinuous. In spite of the fact that the present analysis is not valid at discontinuities of f(xr) it
can be used if the discontinuous function is approximated by some smooth one. In this test example the
following smooth function

26 [17 4 73(ex)® + 35(ex)! + 15(ex)®] 2

(4.8) f(r) = el 5 (cx)?)? + - arctan(er), —-1<r<1

is considered as a fitting of a step function. In this calculation the parameter ¢ was taken to be 10 that
results in that the function Eq.(4.8) has a pronounced interior layer of width O(1/¢) at # = 0. This function
has been chosen so that the optimal grid point distribution Eq.(2.26) can be integrated analytically. As in
the foregoing example, the singularity in the optimal mapping Eq.(2.26) due to the inflection point at = = 0

can be overcome by generating the optimal grid in the —0.5 < x < 0 and 0 < & < 0.5 intervals separately,
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Fic. 4.7. Pointwise error distribution for a second-order approrimation calculated on the analytical optimal. numerical

optimal, and corresponding uniform grids.

that gives

—\/ 5 0<€<03

1+2¢2¢°

T, 05<E<L

(49) Lopt (6) = ;
+2e=(1-¢)

The error convergence of the symmetric second-order discretization of f, evaluated on the optimal grid
Eq.(4.9) is compared with results obtained by second- and third-order approximations on a uniform grid as
well as with the truncation error calculated on grids generated by using the standard Eq.(2.41) and new
Eq.(2.26),(2.30) grid adaptation criteria in Fig.4.8. Because of the internal layer thickness is comparable
with the finest grid spacing noue of the uniform grids considered can provide second-order results. For
the analytical optimal grid the convergence rate is of the order of O(A£%7). Although. it is less than the
theoretical limit the truncation error on the finest mesh (2560 cells) has heen reduced by more than 5 orders
of magnitude compared to the uniform grid results. Since the standard grid adaptation criterion Eq.(2.41),
which is widely used to improve the resolution near steep gradients of the solution. does not provide the
cancellation of the leading truncation error term these results are about 2 orders of magnitude less accurate
than those obtained on the optimmal grid Eq.(2.26),(4.1),(2.30) as is evident in Fig.4.8.

A comparison of the hybrid approximation Eq.(4.3) on different grids and using different approximations
for the metric coeflicient x¢ is presented in Fig.4.9. If fe and x¢ are evaluated identically the same optimal
grid Eq.(4.9) provides superconvergent results, while if these approximations are different the convergence

rate is even less than QO(A£2).

High-order approzimations, p > 3

For a third-order discretization the optimal grid generation equation Eq.(2.51) can not be solved ana-

Iytically. however, the solution can be found iu the approximate form of Eq.(2.53).(2.54). The same function
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F1G. 4.8, Error convergence for a second-order approzimation of fr, calculated on: [) uniform grid, 2) optimal grid
generated numerically. 3) analytical optimal grid, {) grid adepted in accordance with the arc length criterion, 5) uniform grid

using third-order accurate discretization.

Eq.(4.4), which has been used in the second example is taken as a test function. The first derivative fe and
the metric coefficient are evaluated by a third-order accurate formula as

1
(4.10) (g¢)i = Y (=2g9i—1 — 39 + 6gi1 — git2)

where g(€) is either f(€) or x(§).

Figure 4.10 shows error convergence plots obtained on the optimal Eq.(2.53),(2.54) and uniform grids
with the same number of grid cells. Although, for the mapping Eq.(2.53),(2.54) the leading term of the
truncation error is approximately equal to zero the error convergence rate obtained on the optimal grid is
about O(AE3*) that corroborates the theoretical results. Note that the same iterative technique used earlier
for the second-order approximations can be applied in the present case as well. However, due to the fact that
the optimal coordinate transformation Eq.(2.53),(2.54) is the approximate solution of Eq.(2.51) the iterations
do not practically improve the accuracy of calculation and therefore. these results are not presented here.

The truncation error can be reduced if the optimal grid generation equation Eq.(2.48) is solved numer-
icallv. To avoid the solution of the third-order differential equation a new dependent variable u(r) = &, is
introduced. Then Eq.(2.48), which is a second-order differential equation in terms of u(x). is integrated nu-
merically on a uniform grid constructed in the physical domain. To close Eq.(2.48) the metric coefficient £, is
taken to be proportional to (fy;)'/* at the boundaries. The metric coefficient £, found this way is integrated
and the optimal grid point distribution is obtained by a third-order accurate piecewise spline interpolation
of the function &(r). As one can see in Fig.4.10, these optimal grid results exhibit the convergence rate of
essentially O(A&*) and provide higher accuracy than those calculated on the optimal grid Eq.(2.53).(2.54).

To demonstrate the superiority of the optimal grid adaptation over the equispaced grid point distribution

an error convergence plot of a svmmetric fourth-order accurate approximation of f, calculated on a uniform
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Fi1G. 1.9. Error convergence of a second-order hybrid approzimation calculated with the consistent and inconsistent dis-

cretizations of the metric coefficient on the optimal and uniform grids.

grid with the same number of grid points is also depicted in Fig.4.10. The L, norm of the truncation error
of the third-order approximation Eq.(4.10) on the optimal grid is reduced by a factor of several hundred in
comparison with the fourth-order accurate results obtained on the uniform grid.

Error convergence plots for the following hybrid approximation

<0f> _ ﬁ(—in—l = 3fi +6fiy1 — fixn). i even

(4.11) a7 1 ,
86 (Y3 (“].lfl + 18f,‘+] - 9f,‘+'_) + 2f{+3) . ¢ odd

calculated on the optimal and corresponding uniform grids are shown in Fig.4.11. The optimal grid results
are about 4-5 orders of magnitude more accurate than those obtained on the finest uniform grid. However, if
the metric coefficient is evaluated by Eq.(4.10) in the entire computational domain while the approximation
of f¢ remains the same Eq.(4.11) the error convergence rate of this inconsistent discretization becomes even
less than (J(A&?) as the grid is refined.

The next test example is a fourth-order accurate approximation of the first derivative of the function
f(a) = o™, where the parameter m has been chosen to be 49. The first derivatives fe and g are discretized
by a five-point symmetric approximation

1
(4.12) (9e)i = ToAE (gi—2 — 8gi—1 + 8giv1 — giv2) .
where g(&€) is either f(€) or x(€). It can be shown that if the order of approximation p is an even number

then for f(r) = 2™ the optimal grid generation equation Eq.(2.14) can be solved analvtically. Thus. we have
rtLl

(4.13) Fopt (€) = 75,

The above mapping is optimal in the sense of the minimization of the leading truncation error term if m > p

otherwise any pth-order accurate difference expression approximates the first derivative f, exactly. If we fix
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Fi1G. 4.10. Error convergence for a third-order approcimation of f., f(z) = r"" calculated on: 1) uniform grid, 2) optimal
grid generated numerically, 3) analytical optimnal grid. 4) grid adapted in accordance with the arc length criterion, 5) uniform

grid using fourth-order accurate discretization.

the parameter 1 to be sufficiently large one can observe that as the order of approximation p is increased
the optimal grid Eq.(4.13) becomes more uniform that correlates with the above theoretical analysis. The
optimal grid point distribution can also be calculated numerically by using Eq.(2.54). At each grid point

the unknown parameter a{r) is found as a solution of the equation
(4.14) Ty{a) = 0.

where Ty(a) is given by Eq.(2.59). For this particular choice of the function f(x), Eq.(4.14) can be solved

analyvtically that vields

lm -4
(4.15) Y=o
Note that the optimal mapping Eq.(2.54),(4.15) is identical to Eq.(4.13) if we set p = 4 in it. Error
convergence plots calculated on the analvtical Eq.(4.13) and numerical Eq.(2.54),{4.15) optimal grids as well
as on the corresponding uniform grid are shown in Fig.4.12. As one can see in this figure the fourth-order
approximation Eq.(4.12) on the optimal grid Eq.(4.13) exhibits even a higher convergence rate than O(Ag£")
that allows one to reduce the L, norm of the truncation error by 6 orders of magnitude compared to the
uniform grid results. The numerical approximation of both the second derivative and the integral in Eq.(2.54)
leads to that the optimal grid Eq.(2.54),(4.15) generated numerically provides superconvergent results only
on coarse grids while as the grid is refined the order of approximation deteriorates to 4. Nevertheless, the
evaluation of f, on the 80-cell optimal grid Eq.(2.54).(4.15) is about 3 orders of magnitude more accurate
than that on the uniform grid with the same number of grid points. One of the main reasons of such a
behavior is an error introduced by the numerical approximation of f., in Eq.(2.54). As mentioned above,

the optimal mapping Eq.(4.13) is singular at & = 0 that considerably decreases the accuracy of the f,.
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FiG. 4.11. Error convergence of a third-order hybrid approzimation celculated with the consistent and inconsistent dis-

cretizations of the metric coefficient on the optimal and uniform grids.

approximation Eq.(4.1). This perturbation introduced into the optimal grid by the numerical evaluation
Eq.(4.1) destroys the superconvergence property. However, if one uses the exact expression for f,, despite
that the integral in Eq.(2.54) and #(§) are calculated numerically, the order of approximation is practically
recovered to its optimal value that can be seen in Fig.4.12.

To demonstrate the importance of the consistent approximation of fe and r¢ error convergence plots
calculated using different hvbrid approximations on the optimal and corresponding uniform grids are depicted
in Fig.4.13. The fourth-order accurate hybrid approximation is constructed as follows
(4.16) (fe)i = # iz =Bl 8 i = Jiva). 1 oo
m(—&f,“[ - 10f; + 18 fi 41 —6fico+ fivz). 1 odd
If the metric coefficient ¢ is evaluated by the same difference expression emploved for the first derivative
fe Eq.(4.16) then the leading term of the truncation error is vanished on the optimal grid Eq.(4.13). It is
evident in Fig.4.13 that the truncation error of the consistent hybrid approximation of f¢ and r¢ exhibits
the convergence rate of O(AE%). At the same time. if the metric cocfficient is discretized by the svinmetric
fourth-order accurate formula Eq.{4.12) in the entire computational domain, while the same approximation
Eq.(4.16) is used for fe. the convergence rate deteriorates to O(A€') and the truncation error increases by
a factor of 50-100 in comparison with the consistent approximation results. The deterioration of the error

convergence rate on the finest optimal mesh is presumably caused by the machine accuracy.

4.2. 2D Test Example. We shall seek a particular solution of Eq.(3.6) in the following form

JlEo) = ese
(417) Lopt (6”) = ()—'E(‘O”

Yopt (f ‘I,) = (J)E(,L':;.
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Fi¢. 4.12. Error convergence for a fourth-order approzimation of fr. f(x) = ™ calculated on: 1) uniformn grid, 2)
optimal grid generated numerically. 3) analytical optimal grid, 4) grid edapted in accordance with the arc length criterion, 5)

uniform grid using fifth-order accurate discretization,6) numerical optimal grid generated with the ezact fro,.

where a, 3, and v, ¢, 8, ¢ are given and unknown constants, respectively. Note that this choice of f,
r, and y uniquely defines the function f(x,y) in the physical domain. Since the above mapping must be

nonsingular the Jacobian of the mapping, which is

(4.18) J(&m) = (yv — g)elHOEelor e,
should be positive in the whole computational domain that leads to

(4.19) ~r— ¢ > 0.

Substituting Eq.(4.17) into the first equation of Eq.(3.6) vields

(4.20) (yv — ¢f)a® = (—oa +v3)8° + (va — 85)°.

Equation (4.20) together with the constraint Eq.(4.19) give us a family of the optimal grids. The equation
is simplified considerably if we assume that ¢ = » = 3 = 1. Under this assunption Eq.(4.20) and (4.19) are

reduced to

(4.21) (v —8)a? = (v — )8 + (a — 8)3°

(4.22) v =8>0.

correspondingly. Equation (4.21) has three real roots

vy =a—#f
(1.23) e =8
T3 =«

30



—&——  Uniform, hybrid

Y ——a—— Optimal, consistent
1 ——&—— Optimal, inconsistent
-2

-3

-4

log, ,(Error)
&

LARRS RAARS RAARN LARRE RRRSN ARRAN RARSS LASRS RRREY ARRAS REREE aRAS |

(" l Al ] J i AL A it l | I
25 3 35 4

log,(Celis)

-

-12

—_
g
v
n

FiG. 4.13. FError convergence of a fourth-order hybrid approrimation calculated with the consistent and inconsistent

discretizations of the metric coefficient on the optimal and uniform grids.

The roots 3, and 73 are not appropriate because the second root does not meet the inequality Eq.(4.22)
while the third root implies that f(x) = x. Therefore. the only non-trivial solution of Eq.(4.21), (4.22) is
~ + 6 = . Introducing a parameter m so that v/ = i the particular solution of Eq.(3.6) can be written in
the following form

—ma

Topt (f, 7}) = (‘WEQU

(424) .Ur)pl(gs 7)) = eﬁf('”
m42 2m4l

flaoy) =a »m=tym=1.

In the present test example the parameters m and o have been chosen to be 10 and 3, respectively. The
corresponding optimal 41 x 21 grid and 30 isolines of the function f{x.y) are depicted in Fig.4.14. It is
notable that the optimal grid is orthogonal neither in the domain nor at the boundaries. Moreover, the grid
lines are concentrated near strong gradients and at the same time, they are not strictly aligned to the isolines
of f{ur,y). A second-order accurate approximation of f, is obtained by using two-point central differences for
all the derivatives in Eq.(3.1). A uniform grid is generated by the transfinite interpolation of the boundary
nodes, which are uniformly distributed along the boundaries. Since the optimal grid Eq.(4.24) has been
constructed under the assumption that the leading term of the truncation error in the £ coordinate vanishes
on the optimal grid we shall refine the grid only in ¢ while the number of grid cells in 7 is fixed and equal
to 20. Note that the grid refinement.in the 7 coordinate makes no influence on the convergence rate of the
truncation error that is consistent with Eq.(3.6).

A comparison of the truncation error convergence obtained on the optimal and uniform grids is shown in
Fig.4.15. Similarly to the 1D test examples, the global order of the symmetric second-order approximation
in two dimensions is increased by more than one on the optimal grid. Furthermore, the Ly norm of the

truncation error is about 4 orders of magnitude less than that obtained on the corresponding uniform grid.
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i, 4,14 Optimal 10 x 20 grid and 30 isolines of the function f(r).

As can be seen in Fig.4.15, the new grid adaptation criterion enables one to reach the asymptotic convergence
rate on coarse grids while the application of a third-order accurate discretization on the uniform grid does

not permit us to get so essential reduction in the truncation error as on the optimal grid.

The importance of the identical approximation of the first derivatives f¢ and f, and the metric coefficients
re. yeo and @y, yy,. respectively is illustrated in Fig.4.16. The figure shows that if f. r¢. and y¢ are evaluated

by the same hyvbrid discretization Eq.(4.3) the order of approximation in £ is increased by one if grid points
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F1G. 4.15. Error convergence for a second-order approzimation of [, calculated on: 1) uniform grid. 2) analytical optimal

grid, and 3) uniform grid using third-order accurate discretization.

are redistributed in accordance with Eq.(4.24) regardless what second-order approximations are used for f,,.
1y, and y,. However. if the metric coefficients x¢ and ye are evaluated by the two-point symmetric second-
order difference expression in the entire computational domain, whereas both the hybrid approximation of fe
Eq.(4.3) and the optimal grid Eq.(4.24) remain the same, the order of approximation of f, in £ deteriorates

to 2 and the truncation error is increased by a factor of 103,

5. Conclusion. The new grid adaptation strategy based on the minimization of the leading truncation
error term of an arbitrary pth-order finite difference discretization has been developed. The basic idea of the
method is to redistribute grid points so that the leading truncation error terms due to the differential operator
and the metric coeflicients cancel each other so that the design order of approximation on the optimal grid
is increased by one in the entire computational domain. In contrast to most of the adaptive grid techniques,
for the present method neither the truncation error estimate nor the specification of weighting parameters is
required. Another very attractive characteristic of the new approach is its applicability to hybrid discretiza-
tions. It has been proved that if the differential operator and the metric coefficients are evaluated identically
then the same optimal grid adaptation criterion, which is valid for non-hybrid discretizations. can be used
in the entire computational domain regardless of points where the hybrid difference operator switches from
one approximation to another. One of the main advantages of the new method is that it can be directly
extended to multiple dimensions. It has been shown that the multidimensional grid adaptation criteria are
fully consistent with the one-dimensional counterpart. The 1D and 2D numerical calculations show that
the truncation error obtained on the optimal grid is both superconvergent and reduced by several orders
of magnitude in comparison with the uniformm and standard adaptive grid results for all the test examples

considered.
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